Chem. Ber. 118, 4426-4432 (1985)

Metallorganische π -Liganden: η^4 -1-Phospha-2-ferracyclobutadien-Komplexe

Heinrich Lang, Laszlo Zsolnai und Gottfried Huttner*

Lehrstuhl für Synthetische Anorganische Chemie, Fakultät für Chemie der Universität Konstanz, Postfach 5560, D-7750 Konstanz

Eingegangen am 31. Januar 1985

Die Enthalogenierung von μ -(*tert*-Butylchlorphosphido)-hexacarbonyl- μ -chloro-dieisen(Fe - Fe) (1) mit Zn/Mg führt in Gegenwart von Alkinen zu den Komplexen 4, die als Fe(CO)₃-Derivate eines metallorganischen 4 π -Systems vom 1-Phospha-2-ferracyclobutadien-Typ aufgefaßt werden können. Physikalisch-chemische Daten von 4, insbesondere die Röntgenstrukturanalyse von 4a, stützen diese Auffassung.

Organometallic π -Ligands: η^4 -1-Phospha-2-ferracyclobutadiene Complexes

Dehalogenation of μ -(*tert*-butylchlorophosphido)-hexacarbonyl- μ -chloro-diiron(Fe - Fe) (1) by Zn/Mg in the presence of alkynes leads to the clusters **4**, which may be formulated as Fe(CO)₃ derivatives of an organometallic 4π -ligand of the 1-phospha-2-ferracyclobutadiene type. These results are supported by the physicochemical data of **4** and especially by an X-ray structure analysis of **4a**.

Zu den wichtigsten allgemeinen heuristischen Prinzipien der metallorganischen Chemie gehören die Elektronenzählregeln. Zu der altbekannten 18-Elektronenzählregel sind in den letzten Jahren als ergänzende und erweiternde Konzepte die *Wade*schen Regeln¹⁾ sowie das von *Hoffmann* eingeführte Kriterium der Isolobalie²⁾ hinzugekommen. Beide Regeln erweisen sich in der Clusterchemie als sehr nützlich. Wir beschreiben hier Reaktionen, bei denen über ein als metallorganisch cyclisches 2π -System formuliertes Intermediat 2 durch [2 + 2]-Cycloaddition mit Alkinen cyclobutadienhomologe metallorganische 4π -Systeme $(R')\overline{C=C(R'')=Fe(CO)_3=P(R)}$ (4) entstehen, die durch Bindung an eine Fe(CO)₃-Einheit stabilisiert sind.

Wir hatten vor kurzem gezeigt, daß die Verbindung 1 mit elektropositiven Metallen unter Enthalogenierung und CO-Abspaltung mit sehr hohen Ausbeuten in den Cluster 3 übergeführt werden kann³). Als Intermediat für diese Reaktion hatten wir das metallorganische 2 π -System (CO)₃Fe^{\longrightarrow} P(R)^{\longrightarrow} Fe(CO)₃ (2) formuliert³).

Wir fanden nun, daß 1 mit Alkinen bei der reduktiven Enthalogenierung mit Zn/Mg die Produkte 4 ergibt, deren Bildung man als [2 + 2]-Cycloaddition an das Intermediat 2 verstehen kann.

Die Ausbeuten an 4 sind - im Hinblick auf die in der Clusterchemie häufig sehr geringe Selektivität - ohne Optimierung zufriedenstellend. Die Verbindungen 4 sind die einzigen Reaktionsprodukte, die mit Laufmitteln wie *n*-Pentan oder Toluol an SilicagelSäulen eluiert werden können. **4a** und **d** können aus den intensiv gelben Lösungen als orangefarbene Festkörper auskristallisiert werden, **4b** und **c** sind bei Raumtemperatur flüssig.

Die IR-Spektren zeigen im v_{CO} -Bereich das für zwei Fe(CO)₃-Gruppen charakteristische Muster (Tab. 2).

Die ³¹P-Resonanzsignale findet man im Bereich zwischen 130 und 150 ppm (Tab. 2).

Die Substituenten der als Acetylen-Bausteine eingesetzten C_2 -Einheit sind ¹H-NMRspektroskopisch zweifelsfrei zu identifizieren (Tab. 2). Interessant im Hinblick auf die

Abb. 1. Molekülstruktur von 4a im Kristall

Bindungsverhältnisse in 4 ist die Lage der Signale der ringständigen Wasserstoffe in 4a - c, die in einem für Aromaten charakteristischen Bereich gefunden werden. Mit der Formulierung der Komplexe 4 als komplexgebundene Heterocyclobutadiene ist eine solche Verschiebung zu erwarten⁴).

Im EI-Massenspektrum findet man für alle Verbindungen 4 Signale für das Molekül-Ion sowie für die durch sukzessive CO-Abspaltung entstehenden Fragment-Ionen $[M - n \cdot CO]^+$ (n = 1,2...6). Das verbleibende Fragment Fe₂P(tC_4H_9)R'CCR⁺ zerfällt unter Abspaltung von Fe zu FeP(tC_4H_9)R'CCR⁺, das zu den Bruchstücken FeP(tC_4H_9)⁺ oder RCCR'P(tC_4H_9)⁺ sowie RCCR'P⁺ weiter fragmentiert (Tab. 3).

Der Bau der Verbindungen 4 wurde am Beispiel von 4a durch eine Röntgenstrukturanalyse belegt⁵).

ATON	X / A	Y / B	z/c	U
FE1 FE2 P C1 C2 C3 C5 C6 C7 C7 C9 C10 C11 C12 C12 C12 C12 C13 C12 C13 C14 C15 C15 C15	0.8556(1) 0.8609(1) 0.7105(8) 0.6161(8) 0.4602(9) 0.462(1) 0.464(1) 0.6849(9) 0.668(1) 0.534(1) 0.534(1) 0.532(1) 1.051(1) 1.1770(7) 0.802(1) 0.903(1) 0.903(1) 0.903(1) 0.933(1) 0.741(1) 0.6623(8) 0.9618(9) 1.0199(8)	$\begin{array}{c} 0.3638(1)\\ 0.1577(1)\\ 0.1828(2)\\ 0.3536(8)\\ 0.3536(8)\\ 0.3545(7)\\ 0.4645(9)\\ 0.473(1)\\ 0.617(1)\\ 0.617(1)\\ 0.0609(9)\\ 0.141(1)\\ 0.014(1)\\ 0.014(1)\\ 0.014(1)\\ 0.014(1)\\ 0.014(1)\\ 0.014(1)\\ 0.014(1)\\ 0.014(1)\\ 0.014(1)\\ 0.014(1)\\ 0.014(1)\\ 0.014(1)\\ 0.014(1)\\ 0.014(1)\\ 0.014(1)\\ 0.019(1)\\ 0.0129(1)\\ 0.0129(1)\\ 0.0129(1)\\ 0.2231(8)\\ 0.$	$\begin{array}{c} 0.28861(8)\\ 0.14147(8)\\ 0.2682(1)\\ 0.1407(6)\\ 0.2133(5)\\ 0.2133(5)\\ 0.3264(8)\\ 0.1376(8)\\ 0.1822(9)\\ 0.3606(6)\\ 0.4665(8)\\ 0.3034(9)\\ 0.3762(9)\\ 0.3303(7)\\ 0.3033(7)\\ 0.3653(5)\\ 0.4128(8)\\ 0.4940(6)\\ 0.2401(7)\\ 0.2071(7)\\ 0.0396(7)\\ -0.0259(5)\\ 0.0618(6)\\ 0.0108(5)\\ \end{array}$	$\begin{array}{c} 0.0495(4)\\ 0.0500(4)\\ 0.053(2)\\ 0.053(2)\\ 0.063(2)\\ 0.094(3)\\ 0.098(3)\\ 0.100(3)\\ 0.006(3)\\ 0.100(3)\\ 0.066(2)\\ 0.097(3)\\ 0.067(2)\\ 0.097(3)\\ 0.065(3)\\ 0.05(6)\\ 0.079(2)\\ 0.134(5)\\ 0.071(2)\\ 0.134(5)\\ 0.071(2)\\ 0.13(4)\\ 0.062(2)\\ 0.098(3)\\ \end{array}$
Winkel				
Fe(1)-P-C(7) 134.90	(3) Fe	(2)-P-C(7)	138.4(3)
Fe(1) = F(1)	-C(2) = 75.20	(2) Fe	(2) = C(1) = C(2)	110.0(5)
Fe(1) = Fe(2)) P 54 10	(4) IE (1) P_	(2) = (2)	139 8(6)
Fe(1) - Fe(2)~0(1) 51.90	(2) P	C(2) = C(1)	A3 D(A)
Fe(2)=Fe(1) = P 54 1((1) (1)	1)=0(2)=0(3)	126.6(6)
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	c(7)-P-C(2)	128.7(4)
Abstände				
Fe(1)-P	218.2(3)	₽-C(7)	186(1)	
Fe(1)-C(1)	205.0(7)	C(2)-C(3)	152(1)	
Fe(1)-C(2)	216.8(7)	C(2)-P	175.0(6)	
Fc(1)-Fe(2) 255,9(3)	Fe(1)-C _{co}	175.6(8)-177(1); 176.2(Mittelwert)
Fe(2)-P	218.3(3)	Fe(2)-C	176.2(9)-180.0)(8); 177.5(Mittelwert)
Fe(2)-C(1)	195,8(7)			
C(1) - C(2)	140(1)			

Tab. 1. Strukturparameter, Abstände (pm) und Winkel (Grad) der Verbindung 4aa)

a) In Klammern Standardabweichungen der letzten jeweils angegebenen Dezimalstelle.

4a läßt sich am besten als $Fe(CO)_3$ -Derivat eines von den Zentren P, Fe(2), C(1) und C(2) gebildeten Cyclobutadien-homologen, viergliedrigen Ringes beschreiben. Diese Vorstellung wird durch folgende Befunde nahegelegt:

a) Die Abweichung der vier Ringatome von einer durch den Ring gelegten besten Ebene beträgt im Mittel nur 6 pm.

b) Das Kohlenstoffatom C(2) liegt mit seinen drei Substituenten-Atomen C(1), P und C(3) innerhalb 3 pm in einer Ebene; ebenso ist das Phosphoratom mit den Substituenten-Atomen Fe(2), C(2) und C(7) annähernd coplanar (max. Abweichung 8 pm).

c) Der C=C-Abstand im Ring ist mit 140(1) pm zu einer für aromatische Systeme charakteristischen Bindungslänge aufgeweitet; zugleich sind die Abstände Fe(2) – C(1) mit 195.8(7) und P – C(2) mit 175.0(6) pm gegenüber den akzeptierten Einfachbindungslängen deutlich verkürzt. Auch der interne Vergleich der Bindungslänge P – C(2) mit dem exocyclischen Bindungsabstand P – C(7) (186(1) pm) bestätigt diese Aussage. Der endocyclische Abstand entspricht sehr gut dem Wert, der kürzlich für ein koordinativ gebundenes Phosphaalken (RP = CH₂) bestimmt wurde (176(1) pm)⁶. Auch mit der P = C-Bindungslänge in einem anderen kürzlich dargestellten metallorganischen 4π -Liganden (Abb. 2), wie er in **5** vorliegt, stimmt dieser Bindungsabstand gut überein (175.8(7) pm⁷).

Die beiden Verbindungen 4 und 5 unterscheiden sich, wenn man von den für diese Betrachtung nicht relevanten unterschiedlichen Substituenten an C und P absieht, durch eine Fe(CO)₃-Gruppe, die 5 gegenüber 4 zusätzlich im Ring gebunden enthält. Da eine Fe(CO)₃-Gruppe zu der Baueinheit RB isolobal ist²), ist der Ringligand in 5 ebenso wie der in 4 ein 4π -System. Für beide Verbindungen lassen die *Wade*schen Regeln die experimentell bestätigte *nido*-Struktur erwarten¹).

Wir danken dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft für die finanzielle Unterstützung dieser Arbeit. Für die Aufnahme der Massenspektren danken wir Herrn Dipl.-Chem. K. Knoll und Herrn E. Pilz. Frau M. Glas sind wir für die Durchführung der Elementaranalysen zu Dank verpflichtet.

Experimenteller Teil

Alle Reaktionen werden mit absoluten Lösungsmitteln unter N₂ durchgeführt. Zur Chromatographie dient Kieselgel (Fa. Merck, Korngröße 0.06–0.2 mm). – IR-Spektren: Zeiss IMR 40; CaF₂-Küvetten, Lösungsmittel *n*-Pentan; vs = sehr stark, sh = Schulter, m = mittel, w = schwach und vw = sehr schwach. – ³¹P-NMR-Spektren: Bruker WP 80-FT; 32.38 MHz; in Toluol, 273 K (Standard P(OCH₃)₃ mit $\delta_{P(OCH_3)_3}$ = 139 ppm rel. 85% H₃PO₄). – ¹H-NMR-Spektren: Bruker WP 80-FT (Standard: intern durch Lösungsmittel; [D₆]Aceton = 2.05 ppm, CDCl₃ = 7.24 ppm, rel. TMS ext.). Für alle NMR-Spektren gilt: δ -Werte positiv = tieferes Feld, negativ = höheres Feld. – Massenspektren: Varian MAT 112S (50 °C, Einlaß Ofenschiffchen). – CHN-Elementaranalysen: CHN-Analysator der Fa. Carlo-Erba.

Darstellung der Verbindungen 4: Zu 1.00 g (2.28 mmol) 1³) in 150 ml THF werden 1.5 g (23 mmol) Zn-Pulver, 0.80 g (33 mmol) Mg-Pulver und das entsprechende Alkin (Einwaagen vgl. Tab. 4) gegeben. Diese heterogene Mischung wird 6 h bei 25 °C intensiv gerührt, wobei die rote Farbe langsam nach Braunrot wechselt. Anschließend filtriert man über 10 cm Kieselgel vom überschüssigen Zn- bzw. Mg-Pulver sowie dem gebildeten ZnCl₂ ab, entfernt das Lösungsmittel bei 10^{-2} mbar und chromatographiert den Rückstand bei -25 °C (Säulendimension 15×2.5 cm, *n*-Pentan) über Kieselgel. Mit *n*-Pentan - *n*-Pentan/Toluol (10:1) werden die Verbindungen 4 als langgestreckte, orangefarbene Zonen eluiert. Umkristallisation aus *n*-Pentan bei -80 °C ergibt die Komplexe 4a und d in Form orangefarbener Kristalle. Die Verbindungen 4b bzw. c, die bei 25 °C als Öl anfallen, werden nochmals chromatographiert, wobei jeweils Vor- und Nachlauf

	v	IR ^{a)} CO (cm ⁻¹)	³¹ P-NMR ^{b)} δ(ppm)	¹ H-NMR δ(ppm)		
4a	2062 (s), 1992 (s), 1962 (w)	2034 (vw), 2020 (vs), 1978 (s), 1974 (sh),	143 (s)	1.17 (s, 9H), 1.54 (d, 9H, ${}^{3}J_{PH} = 19.4 \text{ Hz}),$ 6.69 (d, 1H, ${}^{3}J_{PH} = 37.9 \text{ Hz})^{\circ}$ 112 (s, 9H)		
4b	2062 (m), 1976 (s),	2017 (vs), 1992 (s), 1965 (sh), 1949 (vw)	155 (s)	1.47 (d, 9H, ${}^{3}J_{PH} = 19.1$ Hz), 6.45 (d, 1H, ${}^{3}J_{PH} = 38.7$ Hz) ^d) 0.20 (s, 9H), 1.49 (d, 9H, ${}^{3}J_{PH} = 19.3$ Hz), 7.14 (d, 1H, ${}^{3}J_{PH} = 37.4$ Hz) ^c)		
4c	2062 (s), 1994 (s),	2029 (sh), 2019 (vs), 1975 (s), 1962 (w)	139 (s)	0.14 (s, 9 H), 1.41 (d, 9 H, ${}^{3}J_{PH} = 18.9$ Hz), 6.92 (d, 1 H, ${}^{3}J_{PH} = 38.1$ Hz) ^d) 0.92 (t, 3 H, ${}^{2}J_{HH} = 4.6$ Hz), 1.52 (d, 9 H, ${}^{3}J_{PH} = 18.9$ Hz), 1.3 – 2.6 (m, 8H),		
4d	2059 (s), 1974 (s),	2017 (vs), 1990 (s), 1962 (w), 1928 (vw)	131 (s)	6.52 (d, 1H, ${}^{3}J_{PH} = 35.7 \text{ Hz})^{\circ}$ 0.92 (t, 3H, ${}^{2}J_{HH} = 4.5 \text{ Hz}$), 1.45 (d, 9H, ${}^{3}J_{PH} = 18.5 \text{ Hz}$), 1.0-2.58 (m, 8H), 6.26 (d, 1H, ${}^{3}J_{PH} = 36.1 \text{ Hz})^{d}$) 1.14-1.60 (m, 6H), 1.48 (d, 9H, ${}^{3}J_{PH} = 18.3 \text{ Hz}$), 1.83-2.2 (m, 2H), 2.31-2.67 (m - 2H)^{d})		

Tab. 2. Spektroskopische Daten der Verbindungen 4

a) In *n*-Pentan. -b) In Toluol; 273 K. -c) In $[D_6]$ Aceton. -d) In CDCl₃.

Chem. Ber. 118 (1985)

verworfen werden. Die orange- bis rotfarbenen Öle sind analysenrein. Daten für 4a-d siehe Tab. 2-4.

T	4a		4b ^{a)}		4c ^{b)}		4 d ^c)	
1011	m/z	I _r	m/z	Ι _r	m/z	Ι _τ	m/z	I _r
M+	450	6	466	23	464	2	450	24
$M^+ - CO$	422	8	438	11	436	3	422	24
M ⁺ – 2CO	394	6	410	18	408	2	394	25
M ⁺ – 3CO	366	18	382	30	380	6	366	45
M ⁺ – 4CO	338	21	354	27	352	10	338	39
M ⁺ – 5CO	310	36	326	34	324	17	310	71
M ⁺ – 6CO	282	100	298	100	296	9	282	100
$Fe(CO)P(tC_4H_9)R'CCR^+$	254	8	270	5	268	20	254	6
$FeP(tC_4H_9)R'CCR^+$	226	37	242	39	240	41	226	46
$P(tC_4H_9)R'CCR^+$	170	90	186	21			170	9
$FeP(tC_4H_9)^+$	144	83	144	16	144	2	144	60
PR'CCR+	113	49					113	23
R'CCR+	82	6						
tC₄H₅	57	42	57	49	57	23	57	30
Fe ⁺	56	32	56	11	56	7	56	18

Tab. 3. Massenspektren der Verbindungen 4a - d, m/z (rel. Intensitäten in %)

Des weiteren werden folgende Fragmente beobachtet: ^{a)} $FeP(tC_4H_9)C(SiMe_2)CH^+$ 227 (30), $FeP(tC_4H_9)CSiCH^+$ 197 (6), $FeP(tC_4H_9)CCH^+$ 169 (19). - ^{b)} $P(tC_4H_9)^+$ 88 (100). - ^{c)} $P(tC_4H_9)^+$ 88 (51).

Verbin- dung ^{a)}	$R'C \equiv CR$ mg (mmol)	Ausb. ^{b)} mg (%)	Schmp. ^{c)} (°C)	Summenformel (Molmasse)		Analy C	yse H
4a	400 (4.88)	250(24)	58	$C_{16}H_{19}Fe_2O_6P$ (450.0)	Ber. Gef.	42.71 42.83	4.26 4.24
4 b	490(5.00)	300(28)		C ₁₅ H ₁₉ Fe ₂ O ₆ PSi (466.1)	Ber. Gef.	38.66 38.71	4.11 4.24
4c	480(5.00)	370(35)		C ₁₇ H ₂₁ Fe ₂ O ₆ P (464.0)	Ber. Gef.	44.00 44.05	4.56 4.38
4 d	400(4.88)	340(33)	143	$C_{16}H_{19}Fe_2O_6P$ (450.0)	Ber. Gef.	42.71 42.64	4.26 4.25

Tab. 4. Synthese- und Analysendaten der Verbindungen 4

^{a)} 4: $[n^4-(1-tert-Buty]-2,2,2-tricarbony]-4-alkyl- bzw. -3,4-dialkyl-1-phospha-2-ferracyclobutadien)]-tricarbonyleisen($ *Fe - Fe*). - ^{b)} Bezogen auf 1. - ^{c)} Unkorrigierte Werte; 4a und d zersetzen sich unter Rotfärbung.

¹⁾ ^{1 a)} K. Wade, J. Chem. Soc. D 1971, 792. - ^{1b)} K. Wade, Adv. Inorg. Chem. Radiochem. 18, 1 (1976).

²⁾ R. Hoffmann, Angew. Chem. 94, 725 (1982); Angew. Chem., Int. Ed. Engl. 21, 711 (1982), und zit. Literatur.

³⁾ H. Lang, L. Zsolnai und G. Huttner, J. Organomet. Chem. 282, 23 (1985).

⁴⁾ ^{4a)} G. F. Emerson, L. Watts und R. Pettit, J. Am. Chem. Soc. 87, 131 (1965). - ^{4b)} M. L. H. Green, L. Pratt und G. Wilkinson, J. Chem. Soc. 1960, 989.

5) Strukturparameter:

4a: $C_{16}H_{19}Fe_2O_6P$; Molmasse 449.99; Raumgruppe $P\bar{1}$ a = 898.5(9), b = 911.9(9), c = 1284(1) pm $\alpha = 94.45(8), \beta = 103.17(7), \gamma = 76.01(7)^{\circ}$ $V = 993 \times 10^{6} \text{ pm}^{3}; Z = 2; d_{ber} = 1.5 \text{ gcm}^{-3}$ μ -Mo- $K_{\alpha} = 15.93 \text{ cm}^{-1}; T = 298 \text{ K}; 2099 \text{ unabhängige Reflexe} (I \ge 2\sigma, 2^{\circ} \le 2\theta \le 44^{\circ});$ $R_1 = 0.055, R_2 = 0.057.$

Die Messung der Strukturdaten erfolgte auf einem P3-Diffraktometer der Fa. Syntex/Nicolet; die Struktur wurde mit Direkten Methoden gelöst. Die Lösung und Verfeinerung erfolgte mit dem Programmsystem EXTL (G. M. Sheldrick, Göttingen, Revision 1982). Die Lage der Wasserstoffatome wurde für geometrisch ideale Positionen berechnet. Ihre Parameter wurden nicht verfeinert ($U_{\rm H} = 0.12$). Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 51221, der Autoren und des Zeitschriftenzitats angefordert werden.

- ⁶⁾ K. Knoll, G. Huttner, M. Wasiucionek und L. Zsolnai, Angew. Chem. 96, 708 (1984); Angew. Chem., Int. Ed. Engl. 23, 739 (1984).
- ⁷⁾ K. Knoll, O. Orama und G. Huttner, Angew. Chem. 96, 989 (1984); Angew. Chem., Int. Ed. Engl. 23, 976 (1984).

[15/85]